Rescuing Type Ia Supernovae from Dust: Bayesian Inference with Near-Infrared and Optical Data

Andrew Friedman
Harvard University, Department of Astronomy

www.cfa.harvard.edu/pairitel
www.pairitel.org, afriedman@cfa.harvard.edu
Collaborators:

Michael Wood-Vasey (Pitt)

Collaborators:

Kaisey Mandel, Pete Challis, Howie Marion, Ryan Foley, Malcolm Hicken, Gautham Narayan, Armin Rest, Alicia Soderberg, (Harvard/CfA)

Michael Wood-Vasey (Pitt)

Joshua Bloom, Dan Starr, Chris Klein, Maryam Modjaz, Adam Miller, Adam Morgan, Dovi Poznanski (Berkeley)

Ori Fox, Mike Skrutskie (UVA)

Cullen Blake (Princeton)

Stephane Blondin (ESO)

Neil Gehrels (NASA GSFC)

Thesis Committee:
Bob Kirshner, Christopher Stubbs, Edo Berger, Daniel Eisenstein, (Joshua Bloom)

Thesis Advisor:
Robert Kirshner

Research Exam Advisor:
Joshua Bloom
Rescuing Type Ia Supernovae from Dust: Bayesian Inference with Near-Infrared & Optical Data

1. Big Picture: SN Ia & Cosmology

2. Data: PAIRITEL SN Project

Wood-Vasey, Friedman+08 (WV08)
Friedman+11 in prep.

3. Analysis: Estimating Dust and Distance

Mandel, Wood-Vasey, Friedman, & Kirshner 09
Mandel, Narayan, & Kirshner 11a
Friedman+11 in prep.
Mandel+11b in prep.
Type Ia Supernovae (SN Ia)

- Thermonuclear explosions of White Dwarf stars in binary systems.
 - Very bright.
 - Can detect in distant galaxies.

- Explode at ~1.4 solar masses →
 - Similar peak intrinsic luminosities

- Almost *Standard candles*: Same intrinsic brightness (L).

- **Distance**: Given L, get d from apparent brightness (F).

\[F = \frac{L}{4\pi d^2} \]
SN Ia are Standardizeable Candles

Optical B-Band (1 parameter) NIR J-Band (4 parameter)

J. Frieman 2008 (FIG 12) (from Kim 2004)

Mandel, Wood-Vasey, Friedman, & Kirshner+2009 (FIG 4,5)
Type Ia Supernova Cosmology

• Measure light curves (LCs) of SN Ia at many wavelengths (brightness vs. time)

• Measure redshift z from spectrum

• Estimate distances μ to SN Ia from observed LCs + models, priors

• Measure μ, z for many SN Ia

• Compare to theoretical model $\mu(z, \Omega)$

\rightarrow constrain cosmological params $\Omega = (\Omega_M, \Omega_\Lambda, w)$
Dust: Getting in the Way

- Dust along line of sight: SN Ia host galaxy + Milky Way
- Dims apparent brightness (*extinction*)
 (Some dimming due to *intrinsic luminosity variation*)
- Preferentially absorbs bluer light (*reddening*)
 (Some redder colors due to *intrinsic color variation*)
- Makes object appear further away
- Ignore dust → systematic overestimate of distance
- Measure dust inaccurately → systematic distance error
Near-Infrared vs. Optical

Optical SN Ia Cosmology
• Reddening from dust extinction + intrinsic color variation
 Dominant systematic distance error

Advantages of Near-Infrared vs. Optical
• Less sensitive to dust extinction
• NIR SN Ia intrinsically more standard
• Ground-based JHK observations at low-z

• Rest-frame NIR observations of high-z SN Ia must be done from space (WFIRST, JWST)
Rescuing Type Ia Supernovae from Dust: Bayesian Inference with Near-Infrared & Optical Data

1. **Big Picture: SN Ia & Cosmology**

2. **Data: PAIRITEL SN Project**
 - Wood-Vasey, Friedman+08 (WV08)
 - Friedman+11 *in prep.*

3. **Analysis: Estimating Dust and Distance**
 - Mandel, Wood-Vasey, Friedman, & Kirshner 09
 - Mandel, Narayan, & Kirshner 11a
 - Friedman+11 *in prep.*
 - Mandel+11b *in prep.*
Scientific Goals:

• Study NIR properties of large, homogeneous, ground-based, low-z, bright SN Ia data set

• NIR+Optical \rightarrow more accurate & precise distances

• Understand dust in other galaxies

• ? High-z cosmology (WFIRST)

• **Thesis: Double published set of NIR SN Ia LCs**
 $\sim 60 \rightarrow \sim 120$
Peters Automated InfraRed Imaging TELEscope

- **PAIRITEL 1.3m**: 2MASS telescope
- **Robotized in 2004**: (Bloom+06)
- **Autonomous queue scheduled obs.**
- **20+ science projects + SN follow-up**

PAIRITEL SN Project

- **~30% time since 2005**
- **Homogeneous data set, tested camera**
- **Simultaneous JHK, ~nightly cadence**
- **Photometric calibration → 2MASS**
- **Optical Phot., Spectra (1.2m, 1.5m)**

PAIRITEL JHKs: SN2006D
Wood-Vasey, Friedman+2008 (FIG 1)
PAIRITEL Supernovae By Type

152 SN
2005-2010
71% Ia
18% Ib/c
11% II

108 Ia

~20 Ia (~28 SN) avg. full season

Observing Season

04-05* 05-06 06-07 07-08 08-09 09-10 Total

Number of SN

~20 Ia (~28 SN) avg. full season
21 PAIRITEL JHKs SN Ia Light Curves

Normal SN Ia LCs \rightarrow 2 NIR peaks

Peculiar-Ia 05bl, 05hk, 05ke excluded from LC template

Fig 2: Wood-Vasey, Friedman+08

Phase Relative to B-band Maximum [days]
Friedman+11 in prep.

Forced DOPHOT on p2/p3 mosaics. SN coords from Opt images. No galaxy subtraction.
CfAIR2: PAIRITEL SN Ia Light Curves

Forced DOPHOT on p2/p3 mosaics. SN coords from Opt images. No galaxy subtraction.

Friedman+11 in prep.
Forced DOPHOT on p2/p3 mosaics. SN coords from Opt images. No galaxy subtraction.
CfAIR2: PAIRITEL SN Ia Light Curves

Forced DOPHOT on p2/p3 mosaics. SN coords from Opt images. No galaxy subtraction.
CfAIR2: PAIRITEL SN Ia Light Curves

snPTF10bs (Type Ia) PAIRITEL/CIA

- **sn2005bo (Type Ia) PAIRITEL/CIA**
- **sn2009ds (Type Ia) PAIRITEL/CIA**

sn2005sq (Type Ia) PAIRITEL/CIA

sn2007s (Type Ia) PAIRITEL/CIA

Clear LC structure.

Friedman+11 *in prep.*

Forced DOPHOT on p2/p3 mosaics. SN coords from Opt images. No galaxy subtraction.
CfAIR2: PAIRITEL SN Ia Light Curves

Clear LC structure, but large gaps in coverage

Friedman+11 in prep.

Forced DOPHOT on p2/p3 mosaics. SN coords from Opt images. No galaxy subtraction.
CfAIR2: PAIRITEL SN Ia Light Curves

Clear LC structure, but sparser data.

Friedman+11 in prep.

Forced DOPHOT on p2/p3 mosaics. SN coords from Opt images. No galaxy subtraction.
Rescuing Type Ia Supernovae from Dust: Bayesian Inference with Near-Infrared & Optical Data

1. **Big Picture: SN Ia & Cosmology**

2. **Data: PAIRITEL SN Project**
 - Wood-Vasey, Friedman+08 (WV08)
 - Friedman+11 *in prep.*

3. **Analysis: Estimating Dust and Distance**
 - Mandel, Wood-Vasey, Friedman, & Kirshner 09
 - Mandel, Narayan, & Kirshner 11a
 - Friedman+11 *in prep.*
 - Mandel+11b *in prep.*
Bayesian Inference

\[P(\theta \mid D, H) \propto P(D \mid \theta, H) \cdot P(\theta \mid H) \]

Posterior Density
- of parameter \(\theta \),
- conditioned on the data \(D \), assuming model \(H \)

Likelihood:
- Probability of data \(D \),
- given model \(H \) with parameters \(\theta \)

Prior
- on model \(H \)
- parameter \(\theta \)

\(H - Hypothesis \): Generative Model for data \(D \)

Derive **inferences** on model parameters \(\theta \) from posterior
Hierarchical Bayesian Inference

\[
P(\{\theta_i\}; \alpha | \{D_i\}) \propto \prod_{i=1}^{N} P(D_i | \theta_i) \frac{P(\theta_i | \alpha)}{P(\theta_i)} \frac{P(\alpha)}{}
\]

Joint Posterior

Density of parameters \(\{\theta_i\}\) for \(N\) objects & hyperparameters \(\alpha\), given all data \(\{D_i\}\)

Joint Likelihood: Probability of data \(D_i\), given parameters \(\theta_i\)

Population Prior: Probability of parameters \(\theta_i\) given hyperparameters \(\alpha\)

Hyperprior on population hyperparameters \(\alpha\)

\(D_i\) - Data for individual object \(i\)

\(\theta_i\) - model parameter for individual object \(i\)

\(\alpha\) - hyperparameters modeling population distribution

Inferences on model parameters \(\{\theta_i\}\) from joint posterior
Hierarchical Bayesian Inference

Model Assumptions & Priors

• Model the population of objects (hyperparameters)
• Model observed & missing data (parameters)
• Model uncertainty from multiple sources

Statistical Inference

• **Training**: Infer population hyperparameters given data from a set of “training” objects

• **Prediction**: Infer parameters for individual object given its data + population hyperparameters.
Mandel+11a

Type Ia Supernova Light Curve Inference: Hierarchical Models in the Optical and Near Infrared

• ~60 NIR (WV08, CSP); ~110 Opt (CfA3: Hicken+09a)

• Statistical model for NIR+Opt SN Ia LCs

• Models uncertainty from multiple sources

• Deals naturally with missing data

• JH + BVRI improves SN Ia distance precision ~60%

• Hubble Diagram RMS distance modulus err:
 NIR+Opt: 0.11 mag Opt: 0.15 mag
Model: Measuring SN Ia Distances

\[\mu = m - M - A(a + br) \]

- \(\mu \) = Distance Modulus
- \(m \) = Apparent magnitude*
- \(M \) = Absolute Magnitude**

\(r = R_V^{-1} \) Host galaxy dust law slope
\(A = A_V \) V-band host galaxy extinction
\(a, b \) CCM law parameters (known from spectra)

*\(m \) Already corrected for time dilation, K-corrections and Milky Way Extinction
**\(M \) not corrected for LC shape

\[E = A(a + br) \]

Color excess from CCM dust law \(\rightarrow \) extinction as a function of wavelength

- To measure color excess \(E \), we must estimate the host galaxy extinction \(A = A_V \), and dust law slope \(r = 1/R_V \)
Training
Infer population params for SN Ia intrinsic Light Curves & Dust.
Condition on observed LCs D_s + redshifts z_s for all SN in sample.

Prediction
Infer distance μ_p to a SN.
Condition on observed SN Light Curve data D_p + population params from training (not redshift z)

Mandel+11a (FIG 1)
Sources of Uncertainty

• **intrinsic LC shape & color variations**

• **dust extinction & host galaxy reddening**

• **peculiar velocity & distances**

• **photometric measurement error**

Uncertainties for redshift & time dilation, K-corrections, & Milky Way extinction included in photometric error budget
Measuring Dust: Standard Method

\[E = O - C = A(a + br) \]

Color excess from CCM dust law → extinction as a function of wavelength

\[O = \text{Observed color} \quad r \equiv R_V^{-1} \]

Host galaxy dust law slope

\[C = \text{Intrinsic color} \quad A \equiv A_V \]

V-band extinction

\[E = \text{Color excess} \quad a, b = \]

CCM law parameters (known from spectra)

Relate extinction between bandpasses

• Assume subset \(X \) of SN Ia have 0 reddening (\(E=0 \))

• Use subset to estimate intrinsic color curves (\(C_0=O_X \))

• For other SNs, measure observed color curves \(O_s \)

• Estimate Color Excesses: \(E_s = O_s - C_0 \)

• Determine \(A_V, R_V \) from \(E_s \), CCM law, multiple colors
Estimating Opt-NIR Color Excesses

Friedman+11

V-J

V-H

V-K

Friedman+11 in prep.
Measuring Dust: Bayesian Method

Model SN, dust populations for single color at single time

Gaussian: Observed color O

$$P(O|C, A, r) \propto \exp \left(\frac{-(O - C - A(a + br))^2}{2\sigma_o^2} \right)$$

Exponential: Extinction A

$$P(A|\tau) \propto \exp \left(\frac{-A}{\tau} \right); \quad A \geq 0$$

Gaussian: Intrinsic color C

$$P(C|\mu_c, \sigma_c) \propto \exp \left(\frac{-(C - \mu_c)^2}{2\sigma_c^2} \right)$$

Gaussian: Dust law slope r

$$P(r|\mu_r, \sigma_r) \propto \exp \left(\frac{-(r - \mu_r)^2}{2\sigma_r^2} \right)$$

Hyperparameters of SN, dust populations α

$$\alpha = (\mu_c, \sigma_c; \tau; \mu_r, \sigma_r)$$

Hard Part: Mandel+2011a determines $P(\alpha|O)$: posterior probability of population hyperparameters α, conditioned on observed color data O (computed w/ MCMC).

Uses ALL SN color data (not just assumed $E=0$ subset)

Estimate intrinsic color pop. distribution hyperparameters μ_c, σ_c.

5/7/11

Philosophy of Cosmology Workshop, University of Western Ontario 31
Measuring Dust: Bayesian Method

Easy Part: For each SN compute $P(A,r|O,\alpha)$: the posterior probability of A,r given observed color O & hyperparameters α

$$P(A, r|O; \alpha) \propto \exp\left(-\frac{A}{\tau}\right) \times \exp\left(-\frac{(r - \mu_r)^2}{2\sigma_r^2}\right) \times \exp\left(-\frac{(E - \mu_E)^2}{2\sigma_E^2}\right)$$

$$\mu_E = O - \mu_c, \quad E = A(a + br), \quad \sigma_E^2 = \sigma_o^2 + \sigma_c^2, \quad A > 0.$$

Eq. adapted from: Mandel, Wood-Vasey, Friedman & Kirshner 09; Mandel+11a.

Fig adapted from: Fig 3 of Mandel+11a

NIR (WV08) + Opt (CfA3) LCs of sn2005eq fitted w/ multi-band LC model → observed color data O → Estimate best fit A_v, R_v & uncertainties

$P(A_v,R_v|O,\alpha)$: Posterior probability of $A_v, R_v = 1/r$ for sn2005eq given observed color data O and population hyperparameters α
Improved Distances: NIR+Optical data

\[P(\mu | D, \alpha) \]

JH + BVRI → SN distance estimates more: accurate & precise

\[P(A_V, \mu | D, \alpha) \]

Conditions on NIR+Opt SN Ia LC data: PTEL, CSP, CfA, & literature (not \(z \))

Figs 17-18: Mandel+11a
NIR+Optical Hubble Diagram

127 SN Ia
JH + BVRI

RMS scatter:
NIR+Opt: 0.11 mag
Opt: 0.15 mag

Low-z NIR SN Ia crucial anchor for cosmology

Fig 16: Mandel+11a
Conclusions: Previous Results w/ Thesis Data

(No correction for NIR LC shape or reddening)

- SN Ia are rest-frame H-band standard candles (~0.15 mag)
 Wood-Vasey, Friedman+08

(No correction for NIR reddening)

- NIR only LC shape model: JHK intrinsic variances [mag]
 \[\sigma(M_J) = 0.17 \pm 0.03, \quad \sigma(M_H) = 0.11 \pm 0.03, \quad \sigma(M_K) = 0.19 \pm 0.04 \]

- JHK Hubble diagram 0.10-0.15 mag scatter. No Opt data.
 Mandel, Wood-Vasey, Friedman, & Kirshner 09

(Correction for Opt+NIR LC shape and reddening)

- JHBVRI vs. BV data improves accuracy (dust extinction systematics), and precision (distance errors ~60% smaller)

- Hubble diagram RMS: NIR+Opt: 0.11 mag, Opt: 0.15 mag
 Mandel, Narayan, & Kirshner 11