The Present and Future of GRB Cosmography

Andrew S. Friedman (Harvard-CfA) & Joshua S. Bloom (Harvard-CfA / UC Berkeley)

www.cosmicbooms.net
Motivations

• GRBs: brightest explosions in universe
• Detectable out to high z > 5 (easy), $z_{\text{max}} \sim 10-20$ (?)
• Gamma-rays penetrate dust
• Any evolution likely orthogonal to Type Ia SNe
• Swift satellite in space! SNAP in 2010? ($z_{\text{max}} \sim 1.7$)

A GRB standard candle could serve as an independent probe of the geometry & expansion history of the universe, complementary to SNe Ia
Improvement in the GRB Hubble Diagram

Panels use different combinations of GRB observables as “standard candles”

1. E_{iso}
 - $\chi^2_v = 343.30$ (36 dof)

2. E_γ
 - $\chi^2_v = 19.27$ (21 dof)

3. $E_{\gamma, cor}$
 - $(\Omega_M, \Omega_\Lambda, h_{70}) = (0.3, 0.7, 1)$
 - $\chi^2_v = 3.42$ (17 dof)
The E_p-E_γ relation

E_p: peak energy of rest frame prompt γ-ray spectrum

E_γ: total γ-ray energy, corrected for beaming

Power Law Fit

$$E_p = \kappa \left(\frac{E_\gamma}{E_0} \right)^\eta$$

To determine E_γ one needs to **assume a cosmology**, pick a model for the jet structure, and “measure” the following:

1. Fluence in observed bandpass (S_γ) **VERY EASY**
2. Peak of prompt-burst spectrum (E_p) **EASY**
3. Spectroscopic redshift (z) **HARD**
4. Time of afterglow jet-break (t_{jet}) **HARD**
5. Ambient Density ($n=10 \text{ cm}^{-3}$?) **VERY HARD**
6. γ-ray conversion efficiency ($\eta_\gamma=20\%$) **UNKNOWN**
Constructing A GRB Hubble Diagram

For self-consistency, one must re-fit for the slope (η) and intercept (κ) of the E_p-E_γ relation in each cosmology.

Don’t want to assume the right answer!

Apparent GRB Distance Modulus [mag]

$$DM_\gamma \approx -2.5 \log \left(\frac{4\pi S_\gamma k t_{\text{jet}} (n\eta_\gamma)^{1/3}}{(1 + z)^2} \right) + C_\gamma + zp$$

Empirical Correction From E_p-E_γ relation [mag]

$$C_\gamma = \frac{10}{3\eta} \log \left(\frac{E_p^{\text{obs}} (1 + z)}{\kappa} \right)$$

$$zp = \left(\frac{10}{3} \right) \log \left(\frac{2E_0}{B^2} \right) - 5 \log (3.085 \times 10^{19} \text{ cm}) + 5 \log (h_{70})$$
Goodness of fit (χ^2/dof) for distance modulus-relation computed for each cosmology in grid. $(\chi^2$/dof)$_{\text{min}}$ gives favored $(\Omega_M, \Omega_\Lambda)$ cosmology. But χ^2/dof > 3 under our assumptions.

So is χ^2/dof acceptable for any $(\Omega_M, \Omega_\Lambda)$?
Sensitivity to Input Assumptions

An acceptable fit for the cosmology requires an acceptable fit for the $E_p - E_\gamma$ relation which is highly sensitive to assumptions for:

1. Density (n)
2. Fractional error ($\sigma n / n$)
3. Data references for individual bursts (small # statistics)

There exist assumptions + data subsets that yield good fits (Dai et. al 2004, Ghirlanda et. al 2004b), but these are not necessarily favored a priori.
Conclusions

• The cosmographic utility of a GRB standard candle constructed from the $E_p - E_\gamma$ relation is **highly sensitive to input assumptions**

• Need **better constraints on the density** (n) from broadband afterglow modeling

• Need **more data** from *Swift* to combat small # statistics
 (~20 $E_p - E_\gamma$ bursts, ~40 with measured z)

Cosmography with GRBs is still *possible*, but is not yet competitive with Type Ia SNe

References

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Journal, Volume, Pages</th>
<th>Year</th>
</tr>
</thead>
</table>